Selective recognition of pyrimidine–pyrimidine DNA mismatches by distance-constrained macrocyclic bis-intercalators
نویسندگان
چکیده
Binding of three macrocyclic bis-intercalators, derivatives of acridine and naphthalene, and two acyclic model compounds to mismatch-containing and matched duplex oligodeoxynucleotides was analyzed by thermal denaturation experiments, electrospray ionization mass spectrometry studies (ESI-MS) and fluorescent intercalator displacement (FID) titrations. The macrocyclic bis-intercalators bind to duplexes containing mismatched thymine bases with high selectivity over the fully matched ones, whereas the acyclic model compounds are much less selective and strongly bind to the matched DNA. Moreover, the results from thermal denaturation experiments are in very good agreement with the binding affinities obtained by ESI-MS and FID measurements. The FID results also demonstrate that the macrocyclic naphthalene derivative BisNP preferentially binds to pyrimidine-pyrimidine mismatches compared to all other possible base mismatches. This ligand also efficiently competes with a DNA enzyme (M.TaqI) for binding to a duplex with a TT-mismatch, as shown by competitive fluorescence titrations. Altogether, our results demonstrate that macrocyclic distance-constrained bis-intercalators are efficient and selective mismatch-binding ligands that can interfere with mismatch-binding enzymes.
منابع مشابه
KF/Al2O3: As a Solid Phase and Recyclable Basic Catalyst for Synthesis Mono and Bis Pyrimidine Derivatives
KF/Al2O3 as a green and efficient catalyst has been used for the synthesis of mono and bis pyrimidine derivatives via three-component reaction of amidines, malononitrile, and aldehydes in EtOH at reflux. The great advantage of this catalyst is the ease of handling. KF/Al2O3 can be used and removed by filtration, avoid cu...
متن کاملDNA mismatch correction.
PERSPECTIVES ANDUMMARY .............................................................. 435 BIOLOGY OFMISMATCH ORRECTION ................................................... 437 Evidence for Mismatch Processing in Vivo .................................................. 437 Postreplication Repair of Biosynthetic Errors ............................................... 438 dam-Independent Mismatch Cor...
متن کاملSpecific binding of human MSH2.MSH6 mismatch-repair protein heterodimers to DNA incorporating thymine- or uracil-containing UV light photoproducts opposite mismatched bases.
Previous studies have demonstrated recognition of DNA-containing UV light photoproducts by bacterial (Feng, W.-Y., Lee, E., and Hays, J. B. (1991) Genetics 129, 1007-1020) and human (Mu, D., Tursun, M., Duckett, D. R., Drummond, J. T., Modrich, P., and Sancar, A. (1997) Mol. Cell. Biol. 17, 760-769) long-patch mismatch-repair systems. Mismatch repair directed specifically against incorrect base...
متن کاملCross-linked DNA: site-selective "click" ligation in duplexes with bis-azides and stability changes caused by internal cross-links.
Heterodimeric interstrand cross-linked DNA was constructed by the "bis-click" reaction carried out on preformed oligonucleotide duplexes with the bis-azide 1. For this, alkynylated 8-aza-7-deazapurine or corresponding 5-substituted pyrimidine nucleosides were synthesized. Cross-linking resulted in chemoselective formation of heterodimeric duplexes while homodimers were suppressed. For product i...
متن کاملDNA Intercalators and Using Them as Anticancer Drugs
Many anticancer drugs in clinical use interact with DNA through intercalation, which is process that starts with the transfer of the intercalating molecule from an aqueous environment to the hydrophobic space between two adjacent DNA base pairs. In general, intercalatig agents are two types: monofunctional and bifunctional. Monofunctional intercalators contain one intercalating unit and Bifunct...
متن کامل